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Abstract—Digital  simulation of  robotic systems is  a  near-
universal need in the development of new autonomy. That need
is  exponentially  increased  in  the  case  of  oceanographic
engineering,  which  remains  one  of  the  most  expensive
applications of  the  technology.  While  many modern robotics
simulators aim to implement high-fidelity physics engines and
3D graphics,  this  paper highlights  the conversely lightweight
toolset  used  in  the  MOOS-IvP  ecosystem for  high-level  and
multi-vehicle simulation.  Additionally we evaluate a modular
container  stack,  WebMOOS,  containing  an  API  and  other
microservices that serve a set of standard interfaces for new
engineers and scientists.
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I INTRODUCTION

In the field of Marine Robotics, precious  sea time is an
expensive  commodity  valued  by  engineers  and  mariners
alike, but rarely yielded from important maritime operations.
This  scarcity  has  fortunately  resulted  in  numerous
innovations  in  the  field  of  marine  simulation,  with  higher
fidelity  simulation  environments  being  developed  all  the
time. Gazebo, an open-source standard originally developed
alongside  the  Robot  Operating  System  (ROS  and  ROS2)
middleware,  has  grown  more  ubiquitous  among  these
environments,  using  GPU  acceleration  to  render  realistic
underwater  and  surface  3D  environments  [1].  These
simulation environments are excellent  for testing low-level
code with high-fidelity, but may not scale well when testing
more  high-level  and  multivehicle  operations.  For  these
scenarios, a thinner simulator is more practical.  Sometimes
used  as  a  backseat  autonomy  controller  for  ROS-enabled
vehicles,  MOOS-IvP  and  its  lightweight  simulator
uSimMarine  can  fulfill  this  role  [2].  This  paper  presents
WebMOOS,  a  standard  collection  of  interfaces  wrapped
around  the  MOOS-IvP  toolset  to  empower  high-level
autonomy engineers to more rapidly develop. 

II BACKGROUND ON MOOS-IVP

MOOS (Mission Oriented Operating Suite) is a feature-
complete middleware developed in 2001 by Paul Newman of
Oxford university [3]. The subsequent extension MOOS-IvP
(Interval Programming), maintained by Michael Benjamin at
MIT,  introduced  a  behavior-based  interval  programming
architecture to handle multi-variable optimization problems
common to modern  robotics development.  This  high-level
autonomy system is used by the MIT Marine Autonomy Lab
and the MIT Naval Architecture students, as well as several
labs and startups in the marine robotics space. The MOOS-
IvP libraries  encompass  many typical  scopes  of autonomy
design, providing internal standards and tools for definition
of  vehicle  dynamics,  inter-vehicle  communication,  and
simple environment simulation.

MOOS  itself  can  be  thought  of  as  a  lightweight
alternative to ROS, LCM (Lightweight Communications and
Marshalling),  and  other  robotics  middlewares,  handling
interprocess  communication  with  a  pubsub  (publish  and
subscribe)  architecture  [4].  MOOS  forgoes  any  sort  of
dedicated  external  message  definition,  instead  passing
messages between MOOS “apps” as strings and floats. In a
typical MOOS architecture, a dedicated app might serve as
an interface to external  instruments like radar, or perhaps to
other apps, passing executive commands or sensor data. The
transport  of  these  messages  is  itself  managed  by  another
MOOS app, called the MOOSDB. In its most base form, the
MOOSDB simply  serves  as  a  storage  container  for  these
messages, or “MOOSvars”. Other apps can subscribe to these
MOOSvars  to  receive  updates  to  their  values,  and  can
similarly publish to MOOSvars as well.

MOOS-IvP adds enhancements like the Helm IvP MOOS
app, which uses a behavioral approach to optimize a speed
and  heading  solution  around  multi-variable  problems  like
collision avoidance and navigation [5]. For example, while
the vessel is transiting along a path of waypoints, radar data
about  an  incoming  contact  can  trigger  the  spawning  of  a
Collision Avoidance (COLREGs) [6] behavior that outputs a
desired speed and heading along with the original waypoint
transit behavior. The output of both behaviors are weighted
and contribute to the final speed and heading decision of the
autonomy system.

MOOS-IvP also adds the utility uSimMarine, a simple,
lightweight simulation environment that allows configuration
of basic environmental dynamics like buoyancy and current
and subscribes to thruster values and rudder angle [2]. The
simulator  then  publishes  telemetry  data  over  time  to  the
MOOSDB,  where  the  Helm  uses  the  new  data  to  make
decisions about speed and heading in the next iteration.

Figure 1: A simplified diagram of a typical
MOOS-IvP-enabled simulation
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III STANDARDIZATION WITH WEBMOOS

While MOOS-IvP is feature-complete and serves as an
excellent  standalone  option  for  autonomy  control,  its
lightweight,  no-frills  nature  necessitates  a  simple  custom
interface, sharing floats and strings over the MOOSDB client
protocol. And while intersystem marshalling protocols have
been  developed  to  harden  the  MOOS  configuration  and
messaging  architecture  [7],  such  enhancements  requires
additional  frontloaded  technical  investment  that  can  add
further  barrier  to  entry.  This  paper  presents  a  repository
packaging  a  few  thin  architectual  additions  that  allow
scientists and new engineers  to  more easily  integrate  with
modern tools.

III.A Southbound Communication

Southbound communication is defined as messaging from
a higher-level control system to a lower-level control system.
In this case, the lower-level systems are those closer to the
default autonomy control system, MOOS-IvP. An example
would be a user issuing a “deploy” command to the vehicle,
which would then begin a planned mission, perhaps to survey
a location of interest. MOOS-IvP offers command-line tools
to manually “poke” commands like this to the MOOSDB,
similar to the rostopic pub command, but in the efforts of
adopting  a  more  commonly  used  standard,  a  REST
(Representational  State  Transfer)  API  (Application
Programming Interface) was developed, allowing for simple
http POST requests.

With  the  most  popular  programming  languages  of  the
past 10 years being Javascript and Python, [8] and the most
popular  programming technologies  being  web frameworks
like  Node.js  and  React.js,  it’s  likely  that  web  developers
make up the majority of  software  engineers  globally.  And
with  the  advent  of  generative  Large  Language  Models
(LLMs) like ChatGPT, it’s easier than ever to learn and strap
basic full-stack web applications. The REST API presented
here  utilizes  the  python-moos  library  [9]  and  the FastAPI
framework to provide a simple web API written in python.

The most  important  endpoint  of  the  API  is  the  “post-
moosvar”  route.  With python-moos encapsulating  the  API
into a dedicated MOOS app,  the FastAPI library makes it
trivial to define REST endpoints to allow interaction between
higher-level  components  and  the  autonomy  system.  The
format  of  Southbound  communication  was  decided  to  be
Javascript  Object  Notation  (JSON),  a  well-known modern
standard for web communication.

The “post-moosvar” endpoint  allows for the posting of
any MOOSvar from a REST client to the MOOSDB but the
primary  use-case  would  be  posting  of  aforementioned
mission  commands  like  “deploy  mission”  or  “return  to
home”. Indeed, a standard included in nearly every moos-ivp
sample mission is a mode tree that checks the value of the
MOOSvars  “DEPLOY”  and  “RETURN” to  command  the
vehicle  accordingly.  Though  these  postings  are  typically
singular,  the  POST  endpoint  can  be  utilized  for  rapidly
repeated synchronous calls to the MOOSDB assuming the
underlying FastAPI architecture can support them.

While  in  theory  it’s  possible  to  also  expose  a  GET
endpoint that allows for a direct http call to the value of any
specific MOOSvar, in practice most interactions with these
variables  necessitate  a  more  asynchronous  and  continuous
approach. In the first iteration of WebMOOS, we subscribe
to vehicle telemetry messages. For this purpose, an alternate
northbound interface was architected. 

III.B Northbound Communication

Northbound communication is defined as messaging from
a lower-level component (like the autonomy control system)
to  a  higher-level  component,  which  here  could  be  any
microservice  closer  to the user,  e.g.  a  web-based UI (user
interface), like the one included in the linked repository. It’s
important  to  note  that  the  concepts  of  northbound  and
southbound messaging are relative, and indeed, a high-level
autonomy system like  MOOS-IvP  will  be  further  “north”
than,  for  example,  vehicle  motion  controllers  and  sensor
drivers.

The  pubsub  methodology  is  not  unique  to  robotics
middlewares like MOOS and ROS. It’s an architecture used
to  provide  real-time  updates  in  large-scale  social  media
websites  and  IOT  (internet  of  things)  networks  [10].  An
OASIS  standard  protocol  [11],  MQTT (Message  Queuing
Telemetry  Transport)  was  a  natural  fit  for  WebMOOS to
provide  asynchronous  messaging  for  northbound  external
clients of the MOOSDB. 

In the first iteration of WebMOOS, limited messages are
published to the MQTT broker from the FastAPI MOOS app.
The most  important,  NODE_REPORTs,  provide  telemetry
and autonomy mode information about  nearby  vehicles  or
“nodes”.  This  data  proved  sufficient  for  evaluating
WebMOOS,  and  adding  MOOSvars  to  the  MQTT simply
requires  a  call  to  single-publish  the  variable  value  on  a
desired topic. 

The  MQTT  library  used  by  the  API  also  required  a
dedicated message broker,  Eclipse-Mosquitto [12] to serve
data between subscribed clients. The API MOOS client first
subscribes  to  the  NODE_REPORT  MOOSvar  using  the
custom MOOSDB protocol, then parses the data into JSON
before  publishing it  to the “/node-report”  Mosquitto topic.
While not strictly required by the broker, JSON was used for
consistency  with  the  southbound  REST  interface.  The
Mosquitto broker, and all other microservices, are defined as
containers  in  a  docker-compose.yml  file,  and  components

Figure 2: Dataflow is bidirectional, and the
flexibility of the FastAPI app allows for multiple

data transports



can  be  disabled  as  desired,  if  wishing  to  run  any  or  all
portions on “bare metal”, i.e. without containerization.

III.C A bare-bones Web UI

With northbound and southbound interfaces established,
a lightweight Web-based GUI (Graphical User Interface) was
developed  to  showcase  WeMOOS’s  ease-of-use.  As  with
core MOOS-IvP, the intention here was not to build a high-
fidelity  graphical/physical  simulation,  and  was  instead  to
augment the autonomy system with high-level interfaces.

That said, in evaluating a simple Web UI technology, it
was prudent to select something with a low barrier to entry to
scientists and new engineers. While larger frameworks like
React.js  or  GeoDjango  would likely serve  as  more  robust
alternatives and development of such tools is encouraged by
the author, the Javascript graphics library p5.js was selected
for its ease of implementation [14].

A simple express.js server was spun up to serve the p5.js
library  and  sketch  code  statically.  The  p5  architecture
provides easy-to-use convenience functions: “setup”, which
gets  run  once  on  page  refresh,  and  “draw”  which  gets
repeatedly called each frame. Whenever a frame is drawn,
the frontend makes a call to the express server,  which has
subscribed to the node-report MQTT topic and cached data
about the nearby vehicles. The UI then simply paints points
on  the  screen  for  each  vehicle  in  the  cache.  Because  it’s
simply reading data from a short-term cache and painting it,
the UI is completely stateless and there’s no risk of becoming
“out  of  sync”  with  the  express  server,  the  API,  or  the
underlying MOOS-based autonomy.

Similarly, the Deploy and Return buttons on the UI are
simply mapped to POST requests  to  the express.js  server,
which then makes direct requests to the FastAPI container, to
update  MOOSDB  variables  directly.  In  WebMOOS,  the
default mission of 2 vehicles transiting to a waypoint mission
begins with the click of the Deploy button and pressing the
Return  button  commands  the  vehicles  to  return  to  their
respective starting points.

IV CONCLUSION AND FUTURE WORK

This paper describes the first iteration of WebMOOS and
the  design  tenets  of  its  architecture.  While  the  tenets  of
modularity,  extendability,  and  lightweight  implementation
are  unlikely  to  change,  additional  functionality  and

improvements are pending. The contributions of this research
are an initial microservice architecture on which to iterate.
WebMOOS is in a state of early evaluation and development,
and  is  slated  for  beta-testing  at  the  NEREID  Ocean
Conservation Hackathon in June of 2025. 

Along with an improved and more feature-complete (but
still lightweight and stateless) Web UI, future developments
will  include a more practical  MQTT server,  allowing API
clients  to  dynamically  register  for  larger  subsets  of  the
MOOSDB. This will be a requirement for building a more
robust  and  practical  API,  allowing users  to  develop  more
complex applications outside of the MOOSDB.

The described architecture is meant to eliminate or reduce
barries to entry in the fields of robotics and particularly high-
level autonomy development. It is the intention of the author
to work with autonomy developers and scientists particularly
interested  in  multi-vehicle  autonomy  to  evaluate  the
effectiveness  of  the  architecture  in  testing  as  well  as
education. The last core tenet of WebMOOS is ease-of-use,
and the true test of the toolset will be its utility in the various
simulation environments where ubiquity and modularity are
more important than fidelity. 
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