Toward standard interfaces for high-level Autonomy
Simulation with MOOS-IvP

Mathew Schwartzman
Ocean Engineering Lab
NEREID Ocean Conservation, Inc.
Bedford, MA, USA

mcschwartzman@outlook.com

Abstract—Digital simulation of robotic systems is a near-
universal need in the development of new autonomy. That need
is exponentially increased in the case of oceanographic
engineering, which remains one of the most expensive
applications of the technology. While many modern robotics
simulators aim to implement high-fidelity physics engines and
3D graphics, this paper highlights the conversely lightweight
toolset used in the MOQOS-IVP ecosystem for high-level and
multi-vehicle simulation. Additionally we evaluate a modular
container stack, WebMOQOS, containing an API and other
microservices that serve a set of standard interfaces for new
engineers and scientists.

Keywords—autonomy, robotics, maritime, api, docker, ROS,
MOOS

I INTRODUCTION

In the field of Marine Robotics, precious sea time is an
expensive commodity valued by engineers and mariners
alike, but rarely yielded from important maritime operations.
This scarcity has fortunately resulted in numerous
innovations in the field of marine simulation, with higher
fidelity simulation environments being developed all the
time. Gazebo, an open-source standard originally developed
alongside the Robot Operating System (ROS and ROS2)
middleware, has grown more ubiquitous among these
environments, using GPU acceleration to render realistic
underwater and surface 3D environments [1]. These
simulation environments are excellent for testing low-level
code with high-fidelity, but may not scale well when testing
more high-level and multivehicle operations. For these
scenarios, a thinner simulator is more practical. Sometimes
used as a backseat autonomy controller for ROS-enabled
vehicles, MOOS-IVP and its lightweight simulator
uSimMarine can fulfill this role [2]. This paper presents
WebMOOS, a standard collection of interfaces wrapped
around the MOOS-IVP toolset to empower high-level
autonomy engineers to more rapidly develop.

II BACKGROUND ON MOOS-IvP

MOOS (Mission Oriented Operating Suite) is a feature-
complete middleware developed in 2001 by Paul Newman of
Oxford university [3]. The subsequent extension MOOS-IvP
(Interval Programming), maintained by Michael Benjamin at
MIT, introduced a behavior-based interval programming
architecture to handle multi-variable optimization problems
common to modern robotics development. This high-level
autonomy system is used by the MIT Marine Autonomy Lab
and the MIT Naval Architecture students, as well as several
labs and startups in the marine robotics space. The MOOS-
IvP libraries encompass many typical scopes of autonomy
design, providing internal standards and tools for definition
of vehicle dynamics, inter-vehicle communication, and
simple environment simulation.

MOOS itself can be thought of as a lightweight
alternative to ROS, LCM (Lightweight Communications and
Marshalling), and other robotics middlewares, handling
interprocess communication with a pubsub (publish and
subscribe) architecture [4]. MOOS forgoes any sort of
dedicated external message definition, instead passing
messages between MOOS “apps” as strings and floats. In a
typical MOOS architecture, a dedicated app might serve as
an interface to external instruments like radar, or perhaps to
other apps, passing executive commands or sensor data. The
transport of these messages is itself managed by another
MOOS app, called the MOOSDB. In its most base form, the
MOOSDB simply serves as a storage container for these
messages, or “MOOSvars”. Other apps can subscribe to these
MOOSvars to receive updates to their values, and can
similarly publish to MOOSvars as well.

MOOS-IvP adds enhancements like the Helm IvP MOOS
app, which uses a behavioral approach to optimize a speed
and heading solution around multi-variable problems like
collision avoidance and navigation [5]. For example, while
the vessel is transiting along a path of waypoints, radar data
about an incoming contact can trigger the spawning of a
Collision Avoidance (COLREGS) [6] behavior that outputs a
desired speed and heading along with the original waypoint
transit behavior. The output of both behaviors are weighted
and contribute to the final speed and heading decision of the
autonomy system.

MOOSDB

I e T e
t LAT/LON J

< HAon

Control Cmds

Figure 1: A simplified diagram of a typical
MOOS-IvP-enabled simulation

MOQOS-IvP also adds the utility uSimMarine, a simple,
lightweight simulation environment that allows configuration
of basic environmental dynamics like buoyancy and current
and subscribes to thruster values and rudder angle [2]. The
simulator then publishes telemetry data over time to the
MOOSDB, where the Helm uses the new data to make
decisions about speed and heading in the next iteration.

mailto:mcschwartzman@outlook.com

III STANDARDIZATION WITH WEBMOOQOS

While MOOS-IVP is feature-complete and serves as an
excellent standalone option for autonomy control, its
lightweight, no-frills nature necessitates a simple custom
interface, sharing floats and strings over the MOOSDB client
protocol. And while intersystem marshalling protocols have
been developed to harden the MOOS configuration and
messaging architecture [7], such enhancements requires
additional frontloaded technical investment that can add
further barrier to entry. This paper presents a repository
packaging a few thin architectual additions that allow
scientists and new engineers to more easily integrate with
modern tools.

II1.A

Southbound communication is defined as messaging from
a higher-level control system to a lower-level control system.
In this case, the lower-level systems are those closer to the
default autonomy control system, MOOS-IvP. An example
would be a user issuing a “deploy” command to the vehicle,
which would then begin a planned mission, perhaps to survey
a location of interest. MOOS-IVP offers command-line tools
to manually “poke” commands like this to the MOOSDB,
similar to the rostopic pub command, but in the efforts of
adopting a more commonly used standard, a REST
(Representational ~ State Transfer) API (Application
Programming Interface) was developed, allowing for simple
http POST requests.

Southbound Communication

With the most popular programming languages of the
past 10 years being Javascript and Python, [8] and the most
popular programming technologies being web frameworks
like Node.js and React.js, it’s likely that web developers
make up the majority of software engineers globally. And
with the advent of generative Large Language Models
(LLMs) like ChatGPT, it’s easier than ever to learn and strap
basic full-stack web applications. The REST API presented
here utilizes the python-moos library [9] and the FastAPI
framework to provide a simple web API written in python.

The most important endpoint of the API is the “post-
moosvar” route. With python-moos encapsulating the API
into a dedicated MOOS app, the FastAPI library makes it
trivial to define REST endpoints to allow interaction between
higher-level components and the autonomy system. The
format of Southbound communication was decided to be
Javascript Object Notation (JSON), a well-known modern
standard for web communication.

The “post-moosvar” endpoint allows for the posting of
any MOOSvar from a REST client to the MOOSDB but the
primary use-case would be posting of aforementioned
mission commands like “deploy mission” or “return to
home”. Indeed, a standard included in nearly every moos-ivp
sample mission is a mode tree that checks the value of the
MOQOSvars “DEPLOY” and “RETURN” to command the
vehicle accordingly. Though these postings are typically
singular, the POST endpoint can be utilized for rapidly
repeated synchronous calls to the MOOSDB assuming the
underlying FastAPI architecture can support them.

While in theory it’s possible to also expose a GET
endpoint that allows for a direct http call to the value of any
specific MOOSvar, in practice most interactions with these
variables necessitate a more asynchronous and continuous
approach. In the first iteration of WebMOOS, we subscribe
to vehicle telemetry messages. For this purpose, an alternate
northbound interface was architected.

II1.B

Northbound communication is defined as messaging from
a lower-level component (like the autonomy control system)
to a higher-level component, which here could be any
microservice closer to the user, e.g. a web-based UI (user
interface), like the one included in the linked repository. It’s
important to note that the concepts of northbound and
southbound messaging are relative, and indeed, a high-level
autonomy system like MOOS-IvP will be further “north”
than, for example, vehicle motion controllers and sensor
drivers.

Northbound Communication

The pubsub methodology is not unique to robotics
middlewares like MOOS and ROS. It’s an architecture used
to provide real-time updates in large-scale social media
websites and IOT (internet of things) networks [10]. An
OASIS standard protocol [11], MQTT (Message Queuing
Telemetry Transport) was a natural fit for WebMOOS to
provide asynchronous messaging for northbound external
clients of the MOOSDB.

Docker-Compose

ﬁ p5.js Web Ul w

REST GET REST POST

Eclipse-
Mosquitto
Broker

MQTT REST POST

FastAPI MOOS
Client

MOOS Subscribe MOOS Publish

="

Autonomy

AaNNOgHLNOS

NORTHBOUND

Figure 2: Dataflow is bidirectional, and the
flexibility of the FastAPI app allows for multiple
data transports

In the first iteration of WebMOQOS, limited messages are
published to the MQTT broker from the FastAPT MOOS app.
The most important, NODE_REPORTS, provide telemetry
and autonomy mode information about nearby vehicles or
“nodes”. This data proved sufficient for evaluating
WebMOOS, and adding MOOSvars to the MQTT simply
requires a call to single-publish the variable value on a
desired topic.

The MQTT library used by the API also required a
dedicated message broker, Eclipse-Mosquitto [12] to serve
data between subscribed clients. The API MOOS client first
subscribes to the NODE_REPORT MOOSvar using the
custom MOOSDB protocol, then parses the data into JSON
before publishing it to the “/node-report” Mosquitto topic.
While not strictly required by the broker, JSON was used for
consistency with the southbound REST interface. The
Mosquitto broker, and all other microservices, are defined as
containers in a docker-compose.yml file, and components

can be disabled as desired, if wishing to run any or all
portions on “bare metal”, i.e. without containerization.

III.C A bare-bones Web UI

With northbound and southbound interfaces established,
a lightweight Web-based GUI (Graphical User Interface) was
developed to showcase WeMOOS’s ease-of-use. As with
core MOOS-IvP, the intention here was not to build a high-
fidelity graphical/physical simulation, and was instead to
augment the autonomy system with high-level interfaces.

That said, in evaluating a simple Web UI technology, it
was prudent to select something with a low barrier to entry to
scientists and new engineers. While larger frameworks like
React.js or GeoDjango would likely serve as more robust
alternatives and development of such tools is encouraged by
the author, the Javascript graphics library p5.js was selected
for its ease of implementation [14].

Web Ul Container FastAPI Container

:XDTZSZ H Publishing data to
e " subscribe to. QT
QTT and caching
p5.js Graphics
Buttons and
Vehicle Icons

FastAPI REST
endpoints

"\ Express PosTing
to REST >

Figure 3: The simple p5.js Web UI, a stateless UI
that simply draws data as it’s received from the
API

A simple express.js server was spun up to serve the p5.js
library and sketch code statically. The p5 architecture
provides easy-to-use convenience functions: “setup”, which
gets run once on page refresh, and “draw” which gets
repeatedly called each frame. Whenever a frame is drawn,
the frontend makes a call to the express server, which has
subscribed to the node-report MQTT topic and cached data
about the nearby vehicles. The UI then simply paints points
on the screen for each vehicle in the cache. Because it’s
simply reading data from a short-term cache and painting it,
the UT is completely stateless and there’s no risk of becoming
“out of sync” with the express server, the API, or the
underlying MOOS-based autonomy.

Similarly, the Deploy and Return buttons on the UI are
simply mapped to POST requests to the express.js server,
which then makes direct requests to the FastAPI container, to
update MOOSDB variables directly. In WebMOOS, the
default mission of 2 vehicles transiting to a waypoint mission
begins with the click of the Deploy button and pressing the
Return button commands the vehicles to return to their
respective starting points.

IV CONCLUSION AND FUTURE WORK

This paper describes the first iteration of WebMOOS and
the design tenets of its architecture. While the tenets of
modularity, extendability, and lightweight implementation
are unlikely to change, additional functionality and

improvements are pending. The contributions of this research
are an initial microservice architecture on which to iterate.
WebMOOS is in a state of early evaluation and development,
and is slated for beta-testing at the NEREID Ocean
Conservation Hackathon in June of 2025.

Along with an improved and more feature-complete (but
still lightweight and stateless) Web Ul, future developments
will include a more practical MQTT server, allowing API
clients to dynamically register for larger subsets of the
MOOSDB. This will be a requirement for building a more
robust and practical API, allowing users to develop more
complex applications outside of the MOOSDB.

The described architecture is meant to eliminate or reduce
barries to entry in the fields of robotics and particularly high-
level autonomy development. It is the intention of the author
to work with autonomy developers and scientists particularly
interested in multi-vehicle autonomy to evaluate the
effectiveness of the architecture in testing as well as
education. The last core tenet of WebMOOS is ease-of-use,
and the true test of the toolset will be its utility in the various
simulation environments where ubiquity and modularity are
more important than fidelity.

ACKNOWLEDGMENT

The WebMOOS stack is an open-source project that
welcomes community contributions. All development
contributions are publicly recorded on the github repository
at https:/github.com/mcschwartzman/webmoos/tree/main.
I’d like to thank Mike Benjamin at the MIT Marine
Autonomy Lab for his advice in early MOOS-IVP
development and his consistent updates to the core MOOS-
IvP repositories.

REFERENCES

1 B. Bingham et al., "Toward Maritime Robotic Simulation in Gazebo,"
OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 2019, pp. 1-
10, doi: 10.23919/0CEANS40490.2019.8962724.

2 M. Benjamin, “uSimMarine: Basic vehicle simulation,” 2025
[Online]. Avail. https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?
n=IvPTools.USimMarine

3 M. Benjamin, “Overview of the MOOS-IvP Autonomy Project,” 2025
[Online]. Avail. https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?
n=Helm.MOOSIvPIntroduction

4 A. S. Huang, E. Olson and D. C. Moore, "LCM: Lightweight
Communications and Marshalling," 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010,
pp. 4057-4062, doi: 10.1109/IROS.2010.5649358.

5 M. Benjamin, R., John J. Leonard, Henrik Schmidt, and Paul M.
Newman. "An overview of moos-ivp and a brief users guide to the ivp
helm autonomy software." (2009).

6 International Maritime Organization. "Convention on the International
Regulations for Preventing Collisions at Sea, 1972 (COLREGs)."
(1972).

7 T. Shneider "Goby3: A new open-source middleware for nested
communication on autonomous marine vehicles." In 2016 IEEE/OES
Autonomous Underwater Vehicles (AUV), pp. 236-240. IEEE, 2016.

8 StackOverflow, “2024 Developer Survey”, survey.stackoverflow.co,

https://survey.stackoverflow.co/2024/technology, (accessed March 31
2025)

9 M. Saad Ibn Seddik, “Python-MOOS”, github.com
https://github.com/msis/python-moos (accessed March 31 2025)

10 Google Cloud “Architectural Overview of Pub/Sub” google.com
https://cloud.google.com/pubsub/architecture (accessed March 31
2025)

11 Silva, Daniel, Liliana I. Carvalho, José Soares, and Rute C. Sofia. "A
performance analysis of internet of things networking protocols:
Evaluating MQTT, CoAP, OPC UA." Applied Sciences 11, no. 11
(2021): 4879.

12 Mosquitto, Eclipse. "Eclipse mosquitto." Eclipse Mosquitto (2018).

https://cloud.google.com/pubsub/architecture
https://github.com/msis/python-moos
https://survey.stackoverflow.co/2024/technology
https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=Helm.MOOSIvPIntroduction
https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=Helm.MOOSIvPIntroduction
https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=IvPTools.USimMarine
https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.php?n=IvPTools.USimMarine
https://github.com/mcschwartzman/webmoos/tree/main

	I Introduction
	II Background on MOOS-IvP
	III Standardization with WebMOOS
	III.A Southbound Communication
	III.B Northbound Communication
	III.C A bare-bones Web UI

	IV Conclusion and Future Work
	Acknowledgment
	References

